Package: MajKMeans 0.1.0

MajKMeans: k-Means Algorithm with a Majorization-Minimization Method

A hybrid of the K-means algorithm and a Majorization-Minimization method to introduce a robust clustering. The reference paper is: Julien Mairal, (2015) <doi:10.1137/140957639>. The two most important functions in package 'MajKMeans' are cluster_km() and cluster_MajKm(). cluster_km() clusters data without Majorization-Minimization and cluster_MajKm() clusters data with Majorization-Minimization method. Both of these functions calculate the sum of squares (SS) of clustering.

Authors:Sheikhi Ayyub [aut, cre], Yaghoubi Mohammad Ali [aut]

MajKMeans_0.1.0.tar.gz
MajKMeans_0.1.0.zip(r-4.5)MajKMeans_0.1.0.zip(r-4.4)MajKMeans_0.1.0.zip(r-4.3)
MajKMeans_0.1.0.tgz(r-4.4-any)MajKMeans_0.1.0.tgz(r-4.3-any)
MajKMeans_0.1.0.tar.gz(r-4.5-noble)MajKMeans_0.1.0.tar.gz(r-4.4-noble)
MajKMeans_0.1.0.tgz(r-4.4-emscripten)MajKMeans_0.1.0.tgz(r-4.3-emscripten)
MajKMeans.pdf |MajKMeans.html
MajKMeans/json (API)

# Install 'MajKMeans' in R:
install.packages('MajKMeans', repos = c('https://sheikhi-a.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/sheikhi-a/majkmeans/issues

On CRAN:

2.00 score 107 downloads 4 exports 1 dependencies

Last updated 1 years agofrom:2e2cb82dea. Checks:OK: 1 NOTE: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 07 2024
R-4.5-winNOTENov 07 2024
R-4.5-linuxNOTENov 07 2024
R-4.4-winNOTENov 07 2024
R-4.4-macNOTENov 07 2024
R-4.3-winNOTENov 07 2024
R-4.3-macNOTENov 07 2024

Exports:clusters_kmclusters_MajKmEuclidkmeans

Dependencies:MASS